Note: Sadly, I have noticed that the code of LaTex changes in WordPress. As an example, the text “\textdegree” use to provide the ˚ symbol but now provides ““. As such, please be patient and do not blame me for all editor faults! 🙂 It truly is an experiment in progress and I am dependent upon LaTex and WordPress consistency.
Title: Drop Evaporation at 10 degrees C, 1 atmosphere, and 71% relative humidity (January in Iraq and near Baghdad): Sarin (Nerve Agent) versus Water
Conclusion: The molar flux of water is greater than sarin. As such, I assume the evaporation of water is greater than sarin. The latter is supported by a relative volatility (water:sarin) that is 12.6 at the specified conditions. Also, the boiling point of sarin is greater than water.
1991 Gulf War Illness
Before I continue, I would like the reader to know that more than 250,000 United States 1991 Gulf War veterans are suffering from 1991 Gulf War Illnesses. The illness can be psychologically and medically debilitating. For more information and to provide support, please please read the December 2012 scientific journal articles that connect chemical weapons to potential cause of illnesses[7;8]. Also, I wrote a post about differing hypotheses and 1991 Gulf War Illness[17].
Actual mathematical properties of a potential drop
Equation:
The base:
The base radius: 2.3 millimeters; The height: 1 millimeter
Drop volume: Double integration in polar coordinates
In polar coordinates
R is a unit disk in the xy plane and one reason I can use polar coordinates.
(i) For fixed , r range: 0 ≤ r ≤ 2.3 millimeters
(ii) Angle range: 0 ≤ ≤ 2
From TI-92:
Convert to cubic centimeters for calculations
Density of fluids
Sarin[12-14]: ChemSpider: 1.07; Noblis: 1.096 at 20 deg C; WISER: 1.0887 at 25 deg C
Note: Difficult finding density data on sarin. As such, will assume the density changes little between above values and 10 deg Celsius.
Sarin average:
Water at 10 deg C[3;15]: Perry’s: 999.699; Engineering Tool Box: 999.7
Water average:
Conversion:
Water average:
Evaporation mass: Drop Volume x density
Sarin:
Water:
Evaporation moles: Mass divide by molecular weight
Sarin:
Water:
Mass transfer: Evaporation
Sarin
The moles of sarin evaporated per square centimeter per unit time may be expressed by[1]
Total molar concentration, c
The gas constant “R” will be calculated at standard temperature and pressure, “STP”
Conversion:
Sarin diffusivity in air at 10 deg Celsius and 1 atmosphere[16]
Assume the gas film
Mole fraction Sarin
From[13a]:
Sarin vapor pressure:
Conversion:
Assume no sarin in the air at a distance away from drop,
For a binary system
The sarin flux
Water
The moles of water evaporated per square centimeter per unit time may be expressed by[1]
Total molar concentration, c
As before, the gas constant “R” will be calculated at standard temperature and pressure, “STP”
Conversion:
Water diffusivity in air at 10 deg Celsius and 1 atmosphere[16]
Assume the gas film
Mole fraction of water
From[4]:
Water vapor pressure:
Constants A, B, C[Appendix A;4], T in kelvins, and pressure is in bar
Conversion:
From[2] and relative humidity of 71% (January weather in Iraq)[9]
Partial pressure of water in flowing stream
Relative humidity[2]:
At 283 K, previous equation gave:
For a binary system
Molar flux of water
Conversion:
Molar Flux: Sarin versus water comparison
Sarin:
Water:
Ratio:
Although the above is a simple evaluation based on “diffusion through a stagnant gas film”[1] and not the most rigorous, the ratio makes since because the ratio of vapor pressures at 10 deg Celsius, “relative volatility”[18], is
Per US Department of Energy[19]
“The evaporation of a liquid depends upon its vapor pressure — the higher the vapor pressure at a given temperature the faster the evaporation — other condition being equal.
The higher/lower the boiling point the less/more readily will a liquid evaporate.”[19]
The boiling points are:
Sarin[14]: 147 deg Celsius; Water[15a]: 100 deg Celsius
Conclusion:
The evaporation of water is greater than the evaporation of sarin.
References:
[1] Welty, James R.; Wicks, Charles E.; Wilson, Robert E. (1984) Fundamentals of Momentum, Heat, and Mass Transfer, Third Edition. New York: John Wiley & Sons.
[2] Felder, Richard M; Rousseau, Ronald W. (1986) Elementary Principles of Chemical Processes, Second Edition. New York: John Wiley & Sons.
[3] Perry, Robert H; Green, Don W. (1997) Perry’s Chemical Engineers’ Handbook, Seventh Edition. New York. McGraw-Hill.
[4] Poling, Bruce E.; Prausnitz, John M.; O’Connell, John P. (2001) The Properties of Gases and Liquids, Fifth Edition. New York: Mcgraw-Hill.
[5] Anton, Howard. Calculus with Analytic Geometry, Fifth Edition. New York: John Wiley & Sons.
[6] Barker, William H; Ward, James E. (1995) The Calculus Companion. Calculus: Howard Anton, Fifth Edition.
[7] Haley, Robert W.; Tuite, James J. Meteorological and Intelligence Evidence of Long-Distance Transit of Chemical Weapons Fallout from Bombing Early in the 1991 Persian Gulf War, December 2012. karger.com[online]. 2012. vol. 40. pp. 160-177. Available from: http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowFulltext&ArtikelNr=345123&Ausgabe=257603&ProduktNr=224263 DOI: 10.1159/000345123
[8] Haley, Robert W.; Tuite, James J. Epidemiologic Evidence of Health Effects from Long-Distance Transit of Chemical Weapons Fallout from Bombing Early in the 1991 Persian Gulf War, December 2012. karger.com[online]. vol. 40. pp. 178-189. Available from: http://content.karger.com/ProdukteDB/produkte.asp?Aktion=ShowFulltext&ArtikelNr=345124&Ausgabe=257603&ProduktNr=224263 DOI: 10.1159/000345124
[9] Wikipedia. Baghdad. en.wikipedia.org[online]. 2013. Available from: http://en.wikipedia.org/wiki/Baghdad#Geography_and_climate
[10] Harding, Byron. Diffusivity of Water versus Sarin (Nerve Agent) in Air at 10 Degrees Celsius (50 Degrees Fahrenheit) and 1 Atmosphere, January 2013. chrisbharding.wordpress.com[online]. 2013. Available from: https://chrisbharding.wordpress.com/2013/01/07/test/
[11] Removed
[12] ChemSpider. The free chemical database. Sarin. chemspider.com[online]. 2013. Available from: http://www.chemspider.com/Chemical-Structure.7583.html
[13] Noblis. Chemistry of GB (Sarin). noblis.org[online]. 2013. Available from: http://www.noblis.org/MissionAreas/nsi/ChemistryofLethalChemicalWarfareAgents/Pages/Sarin.aspx
[13a] Noblis. Parameters for Evaluation of the Fate, Transport, and Environmental Impacts of Chemical Agents in Marine Environments. noblis.org[online]. 2012. Available from: http://pubs.acs.org/doi/pdf/10.1021/cr0780098
[14] Wireless Information System for Emergency Responders. WISER. Sarin, CAS RN: 107-44-8. webwiser.nlm.nih.gov[online]. 2013. Available from: http://webwiser.nlm.nih.gov/getSubstanceData.do?substanceID=151&displaySubstanceName=Sarin&UNNAID=&STCCID=&selectedDataMenuItemID=30
[15] The Engineering ToolBox. Water-Density and Specific Weight. engineeringtoolbox.com[online]. 2013. Available from: http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html
[15a] The Engineering Toolbox. engineeringtoolbox.com[online]. 2013. Available from: http://www.engineeringtoolbox.com/
[16] Harding, Byron. Diffusivity of Water versus Sarin (Nerve Agent) in Air at 10 Degrees Celsius (50 Degrees Fahrenheit) and 1 Atmosphere, January 2013. chrisbharding.wordpress.com[online]. 2013. Available from: https://chrisbharding.wordpress.com/2013/01/07/test/
[17] Harding, Byron. 1991 Gulf War Illnesses and Differing Hypotheses: Nerve and Brain Death Versus Stress, December 2012. gather.com[online] 2012. Available from: http://www.gather.com/viewArticle.action?articleId=281474981824775
[18] Chopey, Nicholas P. (1994). Handbook of Chemical Engineering Calculations, Second Edition. Boston Massachusetts: Mc Graw Hill.
[19] US Department of Energy. Newton: Ask A Scientist.Evaporation and Vapor Pressure. newton.dep.anl.gov[online]. 2012. Available from: http://www.newton.dep.anl.gov/askasci/phy00/phy00130.htm